Numerical modeling of turbulence and its effect on ocean current turbines

Parakram Pyakurel, James H. VanZwieten, Manhar Dhanak, Nikolaos I. Xiros

    Research output: Contribution to journalArticlepeer-review

    Abstract

    An approach for numerically representing turbulence effects in the simulation of ocean current turbines (OCT)s is described. Ambient turbulence intensity and mean flow velocity are utilized to develop analytic expressions for flow velocities at a grid of nodes that are a function of time. This approach is integrated into the numerical simulation of an OCT to evaluate effects of turbulence on performance. For a case study a moored OCT with a 20 m rotor diameter is used. Mean power in the presence of ambient turbulence intensities (TI)s of 5% and 20% are found to be 370 kW and 384 kW, with standard deviations of 17.2 kW and 74.6 kW respectively. Similarly, the axial loads on a single blade of the three-bladed rotor are found to be 139 kN and 140 kN, with standard deviations of 3 kN and 12 kN respectively for these TIs.
    Original languageEnglish
    Pages (from-to)84-97
    Number of pages14
    JournalInternational Journal of Marine Energy
    Volume17
    DOIs
    Publication statusPublished - 1 Apr 2017

    Fingerprint

    Dive into the research topics of 'Numerical modeling of turbulence and its effect on ocean current turbines'. Together they form a unique fingerprint.

    Cite this