Interdependence of Primary Metabolism and Xenobiotic Mitigation Characterizes the Proteome of Bjerkandera adusta during Wood Decomposition

S C Moody, E Dudley, J Hiscox, L Boddy, D C Eastwood

Research output: Contribution to journalArticle

Abstract

The aim of the current work was to identify key features of the fungal proteome involved in the active decay of beechwood blocks by the white rot fungus Bjerkandera adusta at 20°C and 24°C. A combination of protein and domain analyses ensured a high level of annotation, which revealed that while the variation in the proteins identified was high between replicates, there was a considerable degree of functional conservation between the two temperatures. Further analysis revealed differences in the pathways and processes employed by the fungus at the different temperatures, particularly in relation to nutrient acquisition and xenobiotic mitigation. Key features showing temperature-dependent variation in mechanisms for both lignocellulose decomposition and sugar utilization were found, alongside differences in the enzymes involved in mitigation against damage caused by toxic phenolic compounds and oxidative stress.IMPORTANCE This work was conducted using the wood decay fungus B. adusta, grown on solid wood blocks to closely mimic the natural environment, and gives greater insight into the proteome of an important environmental fungus during active decay. We show that a change in incubation temperature from 20°C to 24°C altered the protein profile. Proteomic studies in the field of white-rotting basidiomycetes have thus far been hampered by poor annotation of protein databases, with a large proportion of proteins simply with unknown function. This study was enhanced by extensive protein domain analysis, enabling a higher level of functional assignment and greater understanding of the proteome composition. This work revealed a strong interdependence of the primary process of nutrient acquisition and specialized metabolic processes for the detoxification of plant extractives and the phenolic breakdown products of lignocellulose.

Original languageEnglish
JournalApplied and Environmental Microbiology
Volume84
Issue number2
DOIs
Publication statusPublished - 1 Jan 2018

Fingerprint

Bjerkandera adusta
Coriolaceae
decayed wood
Xenobiotics
xenobiotics
Proteome
proteome
Fungi
mitigation
metabolism
decomposition
Temperature
protein
fungus
lignocellulose
proteins
Basidiomycota
Protein Databases
Proteins
Poisons

Cite this

@article{1519d1573474405180b86518ff00427d,
title = "Interdependence of Primary Metabolism and Xenobiotic Mitigation Characterizes the Proteome of Bjerkandera adusta during Wood Decomposition",
abstract = "The aim of the current work was to identify key features of the fungal proteome involved in the active decay of beechwood blocks by the white rot fungus Bjerkandera adusta at 20°C and 24°C. A combination of protein and domain analyses ensured a high level of annotation, which revealed that while the variation in the proteins identified was high between replicates, there was a considerable degree of functional conservation between the two temperatures. Further analysis revealed differences in the pathways and processes employed by the fungus at the different temperatures, particularly in relation to nutrient acquisition and xenobiotic mitigation. Key features showing temperature-dependent variation in mechanisms for both lignocellulose decomposition and sugar utilization were found, alongside differences in the enzymes involved in mitigation against damage caused by toxic phenolic compounds and oxidative stress.IMPORTANCE This work was conducted using the wood decay fungus B. adusta, grown on solid wood blocks to closely mimic the natural environment, and gives greater insight into the proteome of an important environmental fungus during active decay. We show that a change in incubation temperature from 20°C to 24°C altered the protein profile. Proteomic studies in the field of white-rotting basidiomycetes have thus far been hampered by poor annotation of protein databases, with a large proportion of proteins simply with unknown function. This study was enhanced by extensive protein domain analysis, enabling a higher level of functional assignment and greater understanding of the proteome composition. This work revealed a strong interdependence of the primary process of nutrient acquisition and specialized metabolic processes for the detoxification of plant extractives and the phenolic breakdown products of lignocellulose.",
author = "Moody, {S C} and E Dudley and J Hiscox and L Boddy and Eastwood, {D C}",
note = "Copyright {\circledC} 2018 American Society for Microbiology.",
year = "2018",
month = "1",
day = "1",
doi = "10.1128/AEM.01401-17",
language = "English",
volume = "84",
journal = "Applied and Environmental Microbiology",
issn = "0099-2240",
publisher = "American Society for Microbiology",
number = "2",

}

Interdependence of Primary Metabolism and Xenobiotic Mitigation Characterizes the Proteome of Bjerkandera adusta during Wood Decomposition. / Moody, S C; Dudley, E; Hiscox, J; Boddy, L; Eastwood, D C.

In: Applied and Environmental Microbiology, Vol. 84, No. 2, 01.01.2018.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Interdependence of Primary Metabolism and Xenobiotic Mitigation Characterizes the Proteome of Bjerkandera adusta during Wood Decomposition

AU - Moody, S C

AU - Dudley, E

AU - Hiscox, J

AU - Boddy, L

AU - Eastwood, D C

N1 - Copyright © 2018 American Society for Microbiology.

PY - 2018/1/1

Y1 - 2018/1/1

N2 - The aim of the current work was to identify key features of the fungal proteome involved in the active decay of beechwood blocks by the white rot fungus Bjerkandera adusta at 20°C and 24°C. A combination of protein and domain analyses ensured a high level of annotation, which revealed that while the variation in the proteins identified was high between replicates, there was a considerable degree of functional conservation between the two temperatures. Further analysis revealed differences in the pathways and processes employed by the fungus at the different temperatures, particularly in relation to nutrient acquisition and xenobiotic mitigation. Key features showing temperature-dependent variation in mechanisms for both lignocellulose decomposition and sugar utilization were found, alongside differences in the enzymes involved in mitigation against damage caused by toxic phenolic compounds and oxidative stress.IMPORTANCE This work was conducted using the wood decay fungus B. adusta, grown on solid wood blocks to closely mimic the natural environment, and gives greater insight into the proteome of an important environmental fungus during active decay. We show that a change in incubation temperature from 20°C to 24°C altered the protein profile. Proteomic studies in the field of white-rotting basidiomycetes have thus far been hampered by poor annotation of protein databases, with a large proportion of proteins simply with unknown function. This study was enhanced by extensive protein domain analysis, enabling a higher level of functional assignment and greater understanding of the proteome composition. This work revealed a strong interdependence of the primary process of nutrient acquisition and specialized metabolic processes for the detoxification of plant extractives and the phenolic breakdown products of lignocellulose.

AB - The aim of the current work was to identify key features of the fungal proteome involved in the active decay of beechwood blocks by the white rot fungus Bjerkandera adusta at 20°C and 24°C. A combination of protein and domain analyses ensured a high level of annotation, which revealed that while the variation in the proteins identified was high between replicates, there was a considerable degree of functional conservation between the two temperatures. Further analysis revealed differences in the pathways and processes employed by the fungus at the different temperatures, particularly in relation to nutrient acquisition and xenobiotic mitigation. Key features showing temperature-dependent variation in mechanisms for both lignocellulose decomposition and sugar utilization were found, alongside differences in the enzymes involved in mitigation against damage caused by toxic phenolic compounds and oxidative stress.IMPORTANCE This work was conducted using the wood decay fungus B. adusta, grown on solid wood blocks to closely mimic the natural environment, and gives greater insight into the proteome of an important environmental fungus during active decay. We show that a change in incubation temperature from 20°C to 24°C altered the protein profile. Proteomic studies in the field of white-rotting basidiomycetes have thus far been hampered by poor annotation of protein databases, with a large proportion of proteins simply with unknown function. This study was enhanced by extensive protein domain analysis, enabling a higher level of functional assignment and greater understanding of the proteome composition. This work revealed a strong interdependence of the primary process of nutrient acquisition and specialized metabolic processes for the detoxification of plant extractives and the phenolic breakdown products of lignocellulose.

UR - http://www.mendeley.com/research/interdependence-primary-metabolism-xenobiotic-mitigation-characterizes-proteome-bjerkandera-adusta-d

U2 - 10.1128/AEM.01401-17

DO - 10.1128/AEM.01401-17

M3 - Article

VL - 84

JO - Applied and Environmental Microbiology

JF - Applied and Environmental Microbiology

SN - 0099-2240

IS - 2

ER -