Interdependence of Primary Metabolism and Xenobiotic Mitigation Characterizes the Proteome of Bjerkandera adusta during Wood Decomposition

S C Moody, E Dudley, J Hiscox, L Boddy, D C Eastwood

    Research output: Contribution to journalArticle

    Abstract

    The aim of the current work was to identify key features of the fungal proteome involved in the active decay of beechwood blocks by the white rot fungus Bjerkandera adusta at 20°C and 24°C. A combination of protein and domain analyses ensured a high level of annotation, which revealed that while the variation in the proteins identified was high between replicates, there was a considerable degree of functional conservation between the two temperatures. Further analysis revealed differences in the pathways and processes employed by the fungus at the different temperatures, particularly in relation to nutrient acquisition and xenobiotic mitigation. Key features showing temperature-dependent variation in mechanisms for both lignocellulose decomposition and sugar utilization were found, alongside differences in the enzymes involved in mitigation against damage caused by toxic phenolic compounds and oxidative stress.IMPORTANCE This work was conducted using the wood decay fungus B. adusta, grown on solid wood blocks to closely mimic the natural environment, and gives greater insight into the proteome of an important environmental fungus during active decay. We show that a change in incubation temperature from 20°C to 24°C altered the protein profile. Proteomic studies in the field of white-rotting basidiomycetes have thus far been hampered by poor annotation of protein databases, with a large proportion of proteins simply with unknown function. This study was enhanced by extensive protein domain analysis, enabling a higher level of functional assignment and greater understanding of the proteome composition. This work revealed a strong interdependence of the primary process of nutrient acquisition and specialized metabolic processes for the detoxification of plant extractives and the phenolic breakdown products of lignocellulose.

    Original languageEnglish
    JournalApplied and Environmental Microbiology
    Volume84
    Issue number2
    DOIs
    Publication statusPublished - 1 Jan 2018

    Fingerprint Dive into the research topics of 'Interdependence of Primary Metabolism and Xenobiotic Mitigation Characterizes the Proteome of Bjerkandera adusta during Wood Decomposition'. Together they form a unique fingerprint.

  • Profiles

    Cite this