Abstract
An orthogonally-anisotropic Biot-Johnson-Allard (BJA) model in which the dependences of tortuosity on porosity and angle are determined empirically from acoustic measurements on bone replicas has been developed. Phase velocities and attenuations of the fast and slow waves versus frequency, porosity and angle of propagation have been predicted by using BJA model. The attenuation of the fast wave is below 0.5 Np/m throughout the frequency and propagation angle range. The attenuation of the slow wave is around 1.7 Np/m throughout the frequency and propagation angle range. We also investigated the use of structural borne acoustic wave technique to diagnose the osteoporosis.
Original language | English |
---|---|
Title of host publication | 43rd Annual European Calcified Tissue Society Congress |
Pages | 63-63 |
Number of pages | 1 |
Publication status | Published - 1 May 2016 |