Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems

Fatma A. Hashim, Kashif Hussain, Essam H. Houssein, Mai S. Mabrouk, Walid Al-Atabany

Research output: Contribution to journalArticlepeer-review

Abstract

The difficulty and complexity of the real-world numerical optimization problems has grown manifold, which demands efficient optimization methods. To date, various metaheuristic approaches have been introduced, but only a few have earned recognition in research community. In this paper, a new metaheuristic algorithm called Archimedes optimization algorithm (AOA) is introduced to solve the optimization problems. AOA is devised with inspirations from an interesting law of physics Archimedes’ Principle. It imitates the principle of buoyant force exerted upward on an object, partially or fully immersed in fluid, is proportional to weight of the displaced fluid. To evaluate performance, the proposed AOA algorithm is tested on CEC’17 test suite and four engineering design problems. The solutions obtained with AOA have outperformed well-known state-of-the-art and recently introduced metaheuristic algorithms such genetic algorithms (GA), particle swarm optimization (PSO), differential evolution variants L-SHADE and LSHADE-EpSin, whale optimization algorithm (WOA), sine-cosine algorithm (SCA), Harris’ hawk optimization (HHO), and equilibrium optimizer (EO). The experimental results suggest that AOA is a high-performance optimization tool with respect to convergence speed and exploration-exploitation balance, as it is effectively applicable for solving complex problems. The source code is currently available for public from: https://www.mathworks.com/matlabcentral/fileexchange/79822-archimedes-optimization-algorithm
Original languageEnglish
Pages (from-to)1531-1551
Number of pages21
JournalApplied Intelligence
Volume51
Issue number3
DOIs
Publication statusPublished - 29 Sept 2020

Cite this