Analysing the correlation between social network analysis measures and performance of students in social network-based engineering education

Goran Putnik, Eric Costa, Cátia Alves, Hélio Castro, Leonilde Varela, Vaibhav Shah

Research output: Contribution to journalArticle

Abstract

Social network-based engineering education (SNEE) is designed and implemented as a model of Education 3.0 paradigm. SNEE represents a new learning methodology, which is based on the concept of social networks and represents an extended model of project-led education. The concept of social networks was applied in the real-life experiment, considering two different dimensions: (1) to organize the education process as a social network-based process; and (2) to analyze the students' interactions in the context of evaluation of the students learning performance. The objective of this paper is to present a new model for students evaluation based on their behavior during the course and its validation in comparison with the traditional model of students' evaluation. The validation of the new evaluation model is made through an analysis of the correlation between social network analysis measures (degree centrality, closeness centrality, betweenness centrality, eigenvector centrality, and average tie strength) and the grades obtained by students (grades for quality of work, grades for volume of work, grades for diversity of work, and final grades) in a social network-based engineering education. The main finding is that the obtained correlation results can be used to make the process of the students' performance evaluation based on students interactions (behavior) analysis, to make the evaluation partially automatic, increasing the objectivity and productivity of teachers and allowing a more scalable process of evaluation. The results also contribute to the behavioural theory of learning performance evaluation. More specific findings related to the correlation analysis are: (1) the more different interactions a student had (degree centrality) and the more frequently the student was between the interaction paths of other students (betweenness centrality), the better was the quality of the work; (2) all five social network measures had a positive and strong correlation with the grade for volume of work and with the final grades; and (3) a student with high average tie strength had a higher grade for diversity of work than those with low ties.
Original languageEnglish
Pages (from-to)413-437
Number of pages25
JournalInternational Journal of Technology and Design Education
Volume26
Issue number3
DOIs
Publication statusPublished - 2016

Fingerprint

Engineering education
Electric network analysis
network analysis
social network
Students
engineering
performance
education
student
evaluation
volume of work
learning performance
Education
Social network analysis
Social networks
interaction
interaction behavior
Centrality
behavior analysis
objectivity

Cite this

Putnik, Goran ; Costa, Eric ; Alves, Cátia ; Castro, Hélio ; Varela, Leonilde ; Shah, Vaibhav. / Analysing the correlation between social network analysis measures and performance of students in social network-based engineering education. In: International Journal of Technology and Design Education. 2016 ; Vol. 26, No. 3. pp. 413-437.
@article{7371bba270674f219707f119e4e13bba,
title = "Analysing the correlation between social network analysis measures and performance of students in social network-based engineering education",
abstract = "Social network-based engineering education (SNEE) is designed and implemented as a model of Education 3.0 paradigm. SNEE represents a new learning methodology, which is based on the concept of social networks and represents an extended model of project-led education. The concept of social networks was applied in the real-life experiment, considering two different dimensions: (1) to organize the education process as a social network-based process; and (2) to analyze the students' interactions in the context of evaluation of the students learning performance. The objective of this paper is to present a new model for students evaluation based on their behavior during the course and its validation in comparison with the traditional model of students' evaluation. The validation of the new evaluation model is made through an analysis of the correlation between social network analysis measures (degree centrality, closeness centrality, betweenness centrality, eigenvector centrality, and average tie strength) and the grades obtained by students (grades for quality of work, grades for volume of work, grades for diversity of work, and final grades) in a social network-based engineering education. The main finding is that the obtained correlation results can be used to make the process of the students' performance evaluation based on students interactions (behavior) analysis, to make the evaluation partially automatic, increasing the objectivity and productivity of teachers and allowing a more scalable process of evaluation. The results also contribute to the behavioural theory of learning performance evaluation. More specific findings related to the correlation analysis are: (1) the more different interactions a student had (degree centrality) and the more frequently the student was between the interaction paths of other students (betweenness centrality), the better was the quality of the work; (2) all five social network measures had a positive and strong correlation with the grade for volume of work and with the final grades; and (3) a student with high average tie strength had a higher grade for diversity of work than those with low ties.",
author = "Goran Putnik and Eric Costa and C{\'a}tia Alves and H{\'e}lio Castro and Leonilde Varela and Vaibhav Shah",
year = "2016",
doi = "10.1007/s10798-015-9318-z",
language = "English",
volume = "26",
pages = "413--437",
journal = "International Journal of Technology and Design Education",
issn = "0957-7572",
publisher = "Springer Netherlands",
number = "3",

}

Analysing the correlation between social network analysis measures and performance of students in social network-based engineering education. / Putnik, Goran; Costa, Eric; Alves, Cátia; Castro, Hélio; Varela, Leonilde; Shah, Vaibhav.

In: International Journal of Technology and Design Education, Vol. 26, No. 3, 2016, p. 413-437.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Analysing the correlation between social network analysis measures and performance of students in social network-based engineering education

AU - Putnik, Goran

AU - Costa, Eric

AU - Alves, Cátia

AU - Castro, Hélio

AU - Varela, Leonilde

AU - Shah, Vaibhav

PY - 2016

Y1 - 2016

N2 - Social network-based engineering education (SNEE) is designed and implemented as a model of Education 3.0 paradigm. SNEE represents a new learning methodology, which is based on the concept of social networks and represents an extended model of project-led education. The concept of social networks was applied in the real-life experiment, considering two different dimensions: (1) to organize the education process as a social network-based process; and (2) to analyze the students' interactions in the context of evaluation of the students learning performance. The objective of this paper is to present a new model for students evaluation based on their behavior during the course and its validation in comparison with the traditional model of students' evaluation. The validation of the new evaluation model is made through an analysis of the correlation between social network analysis measures (degree centrality, closeness centrality, betweenness centrality, eigenvector centrality, and average tie strength) and the grades obtained by students (grades for quality of work, grades for volume of work, grades for diversity of work, and final grades) in a social network-based engineering education. The main finding is that the obtained correlation results can be used to make the process of the students' performance evaluation based on students interactions (behavior) analysis, to make the evaluation partially automatic, increasing the objectivity and productivity of teachers and allowing a more scalable process of evaluation. The results also contribute to the behavioural theory of learning performance evaluation. More specific findings related to the correlation analysis are: (1) the more different interactions a student had (degree centrality) and the more frequently the student was between the interaction paths of other students (betweenness centrality), the better was the quality of the work; (2) all five social network measures had a positive and strong correlation with the grade for volume of work and with the final grades; and (3) a student with high average tie strength had a higher grade for diversity of work than those with low ties.

AB - Social network-based engineering education (SNEE) is designed and implemented as a model of Education 3.0 paradigm. SNEE represents a new learning methodology, which is based on the concept of social networks and represents an extended model of project-led education. The concept of social networks was applied in the real-life experiment, considering two different dimensions: (1) to organize the education process as a social network-based process; and (2) to analyze the students' interactions in the context of evaluation of the students learning performance. The objective of this paper is to present a new model for students evaluation based on their behavior during the course and its validation in comparison with the traditional model of students' evaluation. The validation of the new evaluation model is made through an analysis of the correlation between social network analysis measures (degree centrality, closeness centrality, betweenness centrality, eigenvector centrality, and average tie strength) and the grades obtained by students (grades for quality of work, grades for volume of work, grades for diversity of work, and final grades) in a social network-based engineering education. The main finding is that the obtained correlation results can be used to make the process of the students' performance evaluation based on students interactions (behavior) analysis, to make the evaluation partially automatic, increasing the objectivity and productivity of teachers and allowing a more scalable process of evaluation. The results also contribute to the behavioural theory of learning performance evaluation. More specific findings related to the correlation analysis are: (1) the more different interactions a student had (degree centrality) and the more frequently the student was between the interaction paths of other students (betweenness centrality), the better was the quality of the work; (2) all five social network measures had a positive and strong correlation with the grade for volume of work and with the final grades; and (3) a student with high average tie strength had a higher grade for diversity of work than those with low ties.

U2 - 10.1007/s10798-015-9318-z

DO - 10.1007/s10798-015-9318-z

M3 - Article

VL - 26

SP - 413

EP - 437

JO - International Journal of Technology and Design Education

JF - International Journal of Technology and Design Education

SN - 0957-7572

IS - 3

ER -