TY - JOUR
T1 - Accurate multilevel thresholding image segmentation via oppositional Snake Optimization algorithm: Real cases with liver disease
AU - Houssein, Essam H.
AU - Abdalkarim, Nada
AU - Hussain, Kashif
AU - Mohamed, Ebtsam
PY - 2024/1/6
Y1 - 2024/1/6
N2 - Liver-related diseases significantly contribute to global mortality rates. Accurate segmentation of liver disease from CT scans is essential for early diagnosis and treatment selection, particularly in computer-aided diagnosis (CAD) systems. To address challenges posed by inconsistent liver presence and unclear boundaries, an enhanced Snake Optimization (SO) algorithm is proposed that integrates with opposition-based learning (OBL) called (SO-OBL), proving effective in global optimization and multilevel image segmentation. Experiments using CEC’2022 test functions compare SO-OBL with eleven recent and state-of-the-art metaheuristic algorithms, demonstrating its superior performance. Additionally, an advanced liver disease segmentation model based on SO-OBL incorporates an optimized multilevel thresholding technique, leveraging Otsu’s function. Notable segmentation metric results, including FSIM = 0.947, SSIM = 0.941, PSNR = 24.876, MSE = 236.88, and execution time = 0.281, underscore the model’s efficiency and potential for accurate diagnosis in CAD systems.
AB - Liver-related diseases significantly contribute to global mortality rates. Accurate segmentation of liver disease from CT scans is essential for early diagnosis and treatment selection, particularly in computer-aided diagnosis (CAD) systems. To address challenges posed by inconsistent liver presence and unclear boundaries, an enhanced Snake Optimization (SO) algorithm is proposed that integrates with opposition-based learning (OBL) called (SO-OBL), proving effective in global optimization and multilevel image segmentation. Experiments using CEC’2022 test functions compare SO-OBL with eleven recent and state-of-the-art metaheuristic algorithms, demonstrating its superior performance. Additionally, an advanced liver disease segmentation model based on SO-OBL incorporates an optimized multilevel thresholding technique, leveraging Otsu’s function. Notable segmentation metric results, including FSIM = 0.947, SSIM = 0.941, PSNR = 24.876, MSE = 236.88, and execution time = 0.281, underscore the model’s efficiency and potential for accurate diagnosis in CAD systems.
U2 - 10.1016/j.compbiomed.2024.107922
DO - 10.1016/j.compbiomed.2024.107922
M3 - Article
SN - 0010-4825
VL - 169
SP - 107922
JO - Computers in Biology and Medicine
JF - Computers in Biology and Medicine
ER -