TY - JOUR
T1 - A hybrid soft bit flipping decoder algorithm for effective signal transmission and reception
AU - Hussain, Shaik Asif
AU - Babu, Jyothi Chinna
AU - Hasan, Raza
AU - Mahmood, Salman
PY - 2022/6
Y1 - 2022/6
N2 - The Euclidean geometry (EG) based low-density parity check (LDPC) codes are enciphered and deciphered in various modes. These algorithms have the back-and-forth between decoding delay, and power usage, device unpredictability resources, and error rate efficacy are all available with these methods. As a result, the goal of this paper is to develop a comprehensive method to describe both soft and burst error bits for optimal data transfer. As a result, for EG-LDPC codes, a hybrid soft bit flipping (HSBF) decoder is suggested, which decreases decoding complications while improving message data transfer. A simulation model is formed using Xilinx synthesis report to study decoding latency, hardware usage, and power usage. A HSBF decoder is used in this paper, which accepts a 64-bit coding sequence and assigns 64 Adjustable nodes to it. It checks all customizable cluster connections and quantifies adjustable node values and actions. As a consequence of the data collected, our simulation model demonstrates that the HSBF technique outperforms soft bit flipping (SBF) algorithms. As a result, the techniques are ideal for usage in intermediate applications and as well as in cyber security processing technologies, medical applications.
AB - The Euclidean geometry (EG) based low-density parity check (LDPC) codes are enciphered and deciphered in various modes. These algorithms have the back-and-forth between decoding delay, and power usage, device unpredictability resources, and error rate efficacy are all available with these methods. As a result, the goal of this paper is to develop a comprehensive method to describe both soft and burst error bits for optimal data transfer. As a result, for EG-LDPC codes, a hybrid soft bit flipping (HSBF) decoder is suggested, which decreases decoding complications while improving message data transfer. A simulation model is formed using Xilinx synthesis report to study decoding latency, hardware usage, and power usage. A HSBF decoder is used in this paper, which accepts a 64-bit coding sequence and assigns 64 Adjustable nodes to it. It checks all customizable cluster connections and quantifies adjustable node values and actions. As a consequence of the data collected, our simulation model demonstrates that the HSBF technique outperforms soft bit flipping (SBF) algorithms. As a result, the techniques are ideal for usage in intermediate applications and as well as in cyber security processing technologies, medical applications.
U2 - 10.12928/telkomnika.v20i3.23300
DO - 10.12928/telkomnika.v20i3.23300
M3 - Article
SN - 1693-6930
VL - 20
SP - 510
EP - 518
JO - Telkomnika
JF - Telkomnika
IS - 3
ER -